APPENDIX L: PHOTOGRAPHIC SIMULATIONS ## APPENDIX L ## Photographic Simulations Technical information on the generation of photographic simulations is provided here. Computer Aided Design (CAD), Geographic Information System (GIS), and 3-dimensional (3-D) modeling and design software, Global Positioning Systems (GPS) equipment, a Digital Single Lens Reflex (dSLR) camera, and direct conversations with individuals responsible for transmission line pole design were used to prepare the photograph simulations. Photographs were taken in the field at the defined viewpoint locations and used as backgrounds in the computer generated images. Several 3-D models were constructed of the topography and transmission line poles. Pole placement was performed using GIS software. The computer camera placed the poles in the 3-D model at the appropriate location and the images were generated. On-site GPS data were obtained using the Pharos GPS Pocket Navigator package for a hand-held Dell Axim 51 PDA. Data recorded included date, time of day, latitude, longitude, elevation, and heading. Heading was verified with a hand-held compass. On-site photographs were acquired using a Canon 350D dSLR (1.6 crop factor) and a Canon 18-55 mm zoom lens. Camera information recorded and verified from photograph EXIF information included: film speed, focal length, aperture, and shutter speed. Photographs were saved as both unprocessed data from the image sensor and in a compressed format. Montana Digital Elevation Model (DEM) data were obtained from the National Elevation Dataset (NED) as of April 2002 for each of the viewpoints. The data used included 30-meter X-Y resolution and one foot resolution in the Z-plane. Horizontal datum is North American Datum of 1927 (NAD27) with a transverse mercator projection, and National Geodetic Vertical Datum (NGVD) 1929 vertical datum. The proposed transmission line route was presented in the MFSA application (MATL 2006b). The transmission line map datum was converted to NAD27, so that the line could be exported and then re-imported into the 3-D modeling software and aligned with the NAD27 based DEMs. Transmission line and proposed pole specifications and details were obtained from SNC-Lavalin ATP Inc. (2006). Scaled 3-D models were constructed for each of the proposed power pole types and placed into the 3-D model along the proposed transmission line alignment using specified or recommended span distances between poles. Typical conductor and ground cable sag specifications were used unless otherwise specified by SNC-Lavalin. For each simulation, the photograph taken in the field was imported into the 3-D modeling software package and loaded as a background environment within which the view of the 3-D model is generated. To generate the correct view relative to the actual photograph, a software camera was placed at a location identical to where the photograph was taken relating the field location to the DEM location. Using the JEEEP.com coordinate translation applet, GPS recorded camera locations were converted to Universal Transverse Projection (UTM) northing and easting locations to facilitate placement of the software camera.